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THE SU(3) GENERALIZATION OF RACAH’S
SU(2j+1) > SU(2) GROUP-SUBGROUP
EMBEDDING

J. D. Louck and L. C. Biedenharn

Los Alamos National Laboratory, Theoretical Division
Los Alamos, New Mexico 87545 (USA)

Abstract

Racah showed how to embed the symmetry group, SU(2) or SO(3), of a physical
system in the general unitary group SU(2j + 1), where the latter group is the most
general group of linear transformations of determinant 1 that leaves invariant the inner
product structure of an arbitrary state space H,' of the physical system. This state space
H  is at the same time the carrier space of an irreducible representation (irrep) [7] of the
symmetry group. This embedding is achieved by classifying the vector space of mappings
Hj — Hj as irreducible tensor operators with respect to the underlying symmetry group.
These irred:icible tensors are the generators of the Lie algebra of SU(2) + 1). Racah's
method is reviewed within the framework of unit tensor operators. The generaliz *ion of
this technique to the symmetry group U/(3) to obtain the embedding U(3) C U(n),
where n = dim(m] is the dimension of an arbitrary irrep of U(3). As in the SU(2)
case, the group U(3) is the symmetry group of a physical system, and U((lim[m]) is the
most general group of linear transformations thet preserves the inner product structure
of an arbitrary state space Hl"'l of the systeni. This 4tate space H[,,.] is at the same
time the carrier space of irrep [m] of the symmetry group U(3). Preliminary results on
the Lie algebraic vanishings of {/(3) Racah coeflicients in consequence of the embedding

SU(3) c Ey C SU(27) are given.
I. INTRODUCTION

SYMMETRY techniques have played a large role in the development
of quantum physics and chemistry, from the indis;. cnsable applications of
angular momentum and permaatational symmetry, to applicntions of higher
sytunetries originating {from the fnmilies of orthogonal, unitary, symplectic
groups, ete. Marcos Moshinsky and his students have contributed to this
tield for over forty years, especially in exploiting boson operntor methods for
renlizing the carvier spaces of irreducible representations (irreps) of groups
of physical interest. Contributions most relevant to the subject of this paper
inchude Refs, 17,



One well-known example of these techniques is Racah’s embedding of
SU(2), resp., SO(3), in the general unitary group SU(2j + 1):

SU(2) C SU(2j +1), resp.,SO3) C SU2j +1), j =1,3/2, ... . (1.1)

Mathematically, the embeddings in Eq. (1.1) can be realized in many
ways, most of them trivially. The essential point of Racah's method, how-
cver, is that the SU(2) [resp., SO(3)] is to be identified as the symmetry
group of a given physical system, while the group SU(2j 4+ 1) has quite a dif-
ferent origin: It is not usually a symmetry of the physical system as a whole
(global symmetry), but rather is realized as a group of unitary iransforma-
tions that leave invariant a given energy eigenspace of the Hamiltonian, or a
model Hamiltonian, being used to describe the system. The problem posed
by the embedding (1.1), and solved by Racah, is to effect the embedding is
such a way that the symmetry group structure fits into the general unitary
transformations of the degenerate energy eigenspace as a subgroup of trans-
formations. It is for this reason that the method finds many applications to
physical problems, sometimes unexpected.

Racah®? solved this physical embedding problem by the technique of
classifying the Lie algebraic generators of the group SU(2j + 1) as irreducible
tensor operators with respect to the transformations of the energy eigenspace
corresponding to the underlying symmetry group, SU(2) or SO(3). In this
manner, one obtains a basis of the Lie algebra of SU(2j + 1) in which the
structure constants are given in terms of the 3-j and 6-5 coefficients of the
symmetry group. The applications of the Lie algebra of SU(2j 4-1), presented
in this way, to atomic end nuclear spectroscopy are well-known.

We ieview in Section I a slight generalization of the embedding (1.1)
to the form

UR2)yctU2j+1), j=13/2,.... (1.2n)

The methads employed point the way to the U(3) generalization, which is
the subject of this puper. With slight maodifieations, one ean also obtain the
cmbedding

SOl +1). (1.2h)

The genernlization to [7(3) is the embedding expressed by
U7(3) ¢ Udim|m]), (1.3n)
where

dimfm] (g gy V Dmyy miag 4 2)mgy may 4 1)/2 (1.3b)



denotes the dimension of an arbitrary (integral) irrep
[1n] = [m13, ma3, mas) (1.4a)

of U(3). The m3(i = 1,2,3) are arbitrary integers (positive, zero, or nega-
tive) satisfying
my3 2 Ma3 2 M3 . (1.4b)

In analogy with Racah's approach, the U(3) group in Eq. (1.3a) is to be
the symmetry group of the physical system, while the group U(n), with
n = dim[m], is to be a group of transformations of a degenerate cnergy
eigenspace.

The major deterrent to a straightforward generalization of the embed-
ding (1.2a) to that of relation (1.3a) is the resolution of the multiplicity prob-
lem, which afflicts all unitary groupe beyond '(2). This involves additional
structure, operator patiern labelling, which makes the associated Wigner (3-5)
and Racah (6-)) coefficient structure of U(3) decidedly more intricate than
that of U/(2). Nonetheless, these additional operator labellings and their
structural relations are the essential key for developing comprehensive appli-
cations of higher unitary symmetry to problems such as that posed by the
ecmbedding (1.3a).

It is convenient to present in Section II Racah’s method for U(2) by using
directly the concept of a U(2) Wigner operator. This approach places clearly
in evidence the parallel route to be followed in the U(3) generalization. The
underlying algebra of the I7(2) Wigner (unit tensor) operators is an essentinl
ingredient of this approach.

The generalization to U/(3) is developed ia Section I with emphasis on
the role of operntor patterns and the U(3) Wigner operator algebra.

In Raeah'’s embedding of SU(2) [or SO(3)] in U(2j + 1), the structure
constants of the Lie algebra factorize into a product of WCG and Racah
coeflicients. The existence of a group G such that, for example, SO(3) C
G C U(2) 4+ 1) can lead to the vanishing of a Racah coefficient, even though
nll the trinngle nnd symmetry conditions are fulfilled. The first example was
given by Raenh.? (See Vanden Berghe et al' and also Beyer et al.'! for n
summnary of such Lie algebraic zeroes ny of 1986.) It is, therefore, natural to
ask: Can nontrivinl zeroes of the $U(3) 6 ) coefllcients nrise in consequence
of the existence of n group 7 satistfying

SUN3) ¢ o SU(dim[m))? (1.5)

The general method of effecting the embedding (1.5) is given in Section IV,
nnd the question of zeroes for (¢ Fy is nddressed in Seetion V.,



II. RESUME OF RACAH'S METHOD

We summarize in subsections A-J below the vector space and algebraic
structures underlying Racah’s SU(2) C U(2j + 1) embedding. The empha-
sis is on the algebraic properties of unit tensor operators, since this makes
transparent the generalization to U(3).

A. Vector Space:

H; denotes a finite-dimensional inner product space with orthonormal
basis given by

B;={ljm>|m=—-j,=j+1, ... ,j) (2.1a)

of dimension

dinH, =dim[j]=2j +1. (2.1b)

Here j may be any integer or half-integer in the set
J €{0,1/2,1,...}. (2.1c)
B. Action of the SU(2) Lie algebra on H;:

The angular momentum operators J4 = Jy + iJa, Ja,J- = Jy — iJa,
where J = (Jy, J2, J3) is the total angular momentumn of the physical sys-

tem in question (gem-rutoru of the quantal rotation group, SU (2)) have the
standard netion on the space H,:

Jyljm>=[GFmjtm+ )| jm+1>, (2.
Jaljm>=m|jm>,
JHjm> =+ )| jm>,

i
z

—

—

[ )
o W
n =
e —

where J¢ = i + J3 4 J3 denotes the total (squared) angular momentum.
C. Action of SU(2) on H,:

The netion of the group SU(2) genernted by the Lie algebra basis J
(JioJaJy) on the basis H is given by

Ty Hy +Hy, enchU ¢ SU(2), (2.3n)



where

Ty | jm >= Y D}, .(U)|jm' >, (2.3b)

in which DJ(U’) denotes the Wigner D-matrix (see Eq. (3.86) of Ref. 12 (Vol.
8) for their explicit definition, as used here); that is, the correspondence

U - D'(U), eachU € SU(2), (2.4)

is a representation of the group SU(2) by unitary matrices of dimension,
dim[j] = 2j + 1. This unitary property is also expressed by

Ty- = Tyr, (2.5)
where t denotes Hermitian conjugation of U.

D. Irreducible Unit Tensor Operator Maps H; — H;:

0
<a —a>: H; - H; (2.6a)
a
defined by

0
- ] = C;,n.nm+n|.’m+ﬂ> a=01,...,2 2.6b
<a . a>|1m> {0 T, 2 42, (2.6b)

The operator maps

with a = —a,—a + 1, ... ,a, are a basis of all mappings of the vector
space H, into itself. The C-cocfficients in the definition (2.6b) are Wigner-
Clebsch-Gordon (WCG) cocfficients of SU(2); that is, these coefficients are
the elements of the real orthogonal matrix that recluces the Kronecker prod-
uct representation DJ(U) x DI(U) into a direct sum of the irveps D*(U),
which we denote symbolically by

2)

L] % il = Z‘D[lll : (2.7n)

There are, of course, exactly (dim{j])? = (25 + 1) operators defined by
0

Fq. (2.6b), including the identity map <() ()> = 1, mnd in accord with
0

Eq. (2.7Tn). we have

(2j 1 1) - Ll"u ). (2.7h)



The WCG coeflicients are related to the 3-j coefficients by

Cabe = (—1)* "t (: /'; _‘7) /(2c+1)‘/2 . (2.8)

The operators defined by Eq. (2.6b) obey the following relations:

v t

Z<a 0—a><b n—b> =1,on H; ; (2.9a)

o a a

pe(s ) )

In consequence of property (2.9a), the operators defined by Eq. (2.6b) are
called unst tensor opcrators or Wigner operators.

Foreack. a€ {0,1, ... ,2j}, the set of 2a+1 maps (2.6a), corresponding
toa = —a,—-a+1, ... ,a, transform under the action of the unitary operator
Ty defined by Eq. (2.3b) according to

0
TU<(I - (I>Tu—| = ZD;.G(U)<G

(4]

Jm >=6a10a5(2j +1)/(2a+1). (2.9b)

0
—a>, eachU € SU(2). (2.10)

o

This equivariance relation expresses the property that the set of operators

()

iy an irreducible tensor operator of SU(2).

a=—-a,.—a+1, ... .a} (2.11)

E. Algebra of Unit Tensor Operators:

The set of (25 + 1)? operator maps H, — H, defined by Eq. (2.6b) are
n basis of the vector space of all linenr maps H, — H,. The sealars of this
vector space are invariant operators with respeet to SU(2). In addition, these
unit tensor operntors obey the following product law:

0 0\ 0
<h h><u u) ) LW::..“'; (',':..ﬁ."._,,<c' (‘> . (2.12)
i o v ot



where W3S denotes a Racah invariant operator. Its eigenvalue on the space
H; is given by

Wabk(j) = [(2¢ + 1)(2j + 1)"? W(jajb; je) ; (2.13a)

that is,
Wt | jm >= Wik(j) | im > . (2.13b)

The W-coefficient in the right-hand side of Eq. (2.13a) is a Racah coefficient,
which is given in terms of the 6-j coefficient by

IrV(jajb:jc):(—l)”""“{‘:; ; ‘::} (2.13c)

F. Weyl Basis of the Lie Algebra of U(2j+1):
The sct of n? Weyl basis elements of the Lie algebra of U(n) is given by
{Ei | i,k =1,2, ... ,n}. (2.14)

These generators of the general unitary group U(n) (indeed, of the general
linear group) obey the comnmutation relations

[Eiky Evie] = bkv Espr — biir Eivie - (2.15)
For n = 25 + 1, we denote the set (2.14) of generators of U(2) + 1) by

{E)—lll'+l.)—m+l | "l'."l = —j. —j + 1, e ,j} . (2.16)

F. liacah Basis of the Lie Algebra of U(2j+1):

The real orthogonal matrix R of dimension (25 + 1)? is defined by

0
<u - u> jm> . (2.17)
(11

Property (2.9h) expresses the fact that the matrix R with rows enumnerated
by the index pairs (e, ) and columns by the index pairs (', m) is real

(R)nn;m'm = [(2" + l)/(2j + 1)]'” <jm'




orthogonal. This matrix is now used to define a new basis, the Racah basis,
of the Lie algebra of U(25 +1):

E: =) (Raam'm Ejmmr41,j-m+1 (2.18)
m'.m
where we suppress j in the notation Ej for the Racah basis set:
{E&la=0,1, ... ,2j; a=—a, —a+1, ... ,a}. (2.19)
Since the matrix R is real orthogonal, relation (2.18) can be inverted to give

the Weyl generators in terms of the Racah generators:

Ej—m'+l,j—m+l = Z(R)aa;m’m E: . (220)

The embedding of the quantal rotation group SU(2) in U(2j + 1) is
now obtained in the following way: The relation between SU(2) angular
momentum operators (J4, J3, J-) and Wigner operators is given by

0 0
Js =(2J2)'/2<1 -1> ,J3=(J2)‘/2<1 -1>,
1 0

0
J_= (21’)1/2<1 - 1> . (2.21)
-1

From these relations and Eqgs. (2.18), we obtain the following operator iden-
tities on H;:

J = —[22j + 1)iG + 1/3'/? B,y

Jo = (2 + 1)jG +1/3)'* Ey

J_o=[202j + (G +1)/3]'* EL, . (2.22)
These relations give explicitly the embedding of the physical SU(2) group in
U2y +1).

The commutators of the angular momentum operators (., J3, J_) with
the elements (2.18) of the Racah basis are given by

[J,E:)=[(aFa)ata+1)/2 ES,,, (2.23a)
(13 ,E%) = ES . (2.23b)
These relations show that the Racah basis of the Lie algebra of U(2) 4+ 1)
consists of irreducible tensor operators with respect to SU(2). (The results,

Eqs. (2.23), are most easily derived by using relations (2.26) below.) Rela-
tions (2.23), in turn, imply the transformation property:

TeEATu-v = Y D3a(U) En, ench U € SU(2). (2.24)



G. Structure Constants in the Racah Basis:

If X = (Xx) and Y = (Yii) are arbitrary ma rices of dimension n (over
the complex numbers), we define the (extended) elements of the Lie algebra
of U(n) by

Lx=) XaEa, Ly= ) YaEa. (2.25)

s, k=1 k=1

It is then easily proved that
[Lx,Ly] = Lix,y) - (2.26)

Application of this relation to any pair of elements ES and Eg in the
Racah basis and use of the product law (2.12) for unit tensor operators gives

[Es,Ep] = Ak, ES, (2.27)
Y

where the structure cornstants are given by
A% = [(-1)*+*c —1]Cak; [(2a + 1)(2b + 1))'/2 W(abjjicj) . (2.28)

(We have used well-known symmetries of the WCG and Racah coefficients
to bring the structure constants to the form (2.28).)

H. Action of U(2j+1) on H;:
Let V € U(2j + 1), and let the elements of V be enumerated by (Vin'm)
with m' = j,j -~ 1, ... ,—j denoting rows (read from left to right), and

m = j,j—1, ... ,—j denoting columns (read from top to bottom) in the
matrix V. Then the action Sy of U(2j + 1) of H; is given by

Sv|jm>=) Vum|jm' >, cach VeU(2j+1). (2.29)

In particular, since D¥(U) € U(2j + 1), we find that
S,p(”) = TU . (230)
This result shows clearly that the space H; carries the fundamental repre-

sentation

plv-iyy = v (2.31)



of U(27 + 1) and that this representation, when restricted to the quantal
rotation subgroup SU(2), as embedded in U(2j + 1) in the Racah basis,
reduces to the irreps of this SU(2):

plo-o] (DJ'(U)) = Di(U), each U € SU(2) . (2.32)

I. Expansion to U(2) C U(2j+1):

The generators of U(2) are obtained by adjoining the invariant operator

25+1
E§=(2j+1)7'* ) E; (2.33)

=1

to the SU(2) generators (J4,J3,J-). The transition to U(2) is then best
made by using the full U(2) Gel'fand patterns as explained in detail in Ref. 12.

J. The Modiflcation to SO(3) c U(2j+1):

The results given in A-H above apply equally well to the group SO(3)
of 3x3 real, proper orthogonal matrices corresponding to the rotations of a
physical system in IR®. It is customary for this case to write j = ¢,J =L =
(L1,L2,Ls), and to replace D!(U) by D*(R) = D! (U(R)), where £U(R) —
R in the two-to-one homomorphism of SU(2) onto SO(3).

We conclude this summary of Racah’s embedding as described in A-H
above by again pointing out that SU(2) [resp., SO(3)] is the group under
whose action the physical system is invariant (symmetry group). The group
U'(2j +1) [resp., U(2¢+ 1)] need not be a symmetry group of the full physical
system, but only of special quantum states of the system. This general
unitary group always has the significance of being the most general group
of linear transformations of the space H; that preserves the inner product
structure of this space.

III. THE U(3) ¢ U(dim[m]) EMBEDDING
We can now give the
U(3) C U(dimn|m]) (3.1)

generalization of Racah’s U(2) € U(2) + 1) embedding by following, step by
step, the procedures given in A-I in Section II. The group U(3), or SU(3),



is taken as the symmetry group of a physical system, or the model of such a
system. The meaning of the group U(dim[m]) is that it is the most general
group of linear transformations of the carrier space Hjy of an irrep of U(3),
which preserves the inner product. The basic problem is to classify the set
of all maps H{n) — H[m as irreducible tensor operators with respect to the
underlying symmetry group U(3). We proceed as in Section II.

A. Vector Space:

Him] denotes a finite-dimensional inner product space with orthonormal
basis given by

miz M3 MmMj3
Bm={‘ my2 M2 >

mn

this array is a
Ge:l'fand pattern } ' (3.2)

We recall that a U(3) Gel'fand pattern is any triangular array of integers,
positive, zero, or negative, satisfying the betweenness relations:

my3 2 my3 2 M3 2 Mgz 2 My3

myz 2 my 2 maz. (3.3)

We denote such a Gel’fand pattern by

([m])  [m] = [mysmasmag], 1n = (""2 "‘22) . (3.4)

m mi

At times we use a notation less encumbered with subscripts. The dimension
of the space Hi,,| is dim(m], as given by Eq. (1.3b).

B. Action of the U(3) Lie Algebra on H|,:

We denote the set of Weyl basis elements of the Lie algebra of the sym-
metry group U(3) of a physical system by

(K, |ij=123}. (3.5)

These operators are, by definition, linear mappings Hy,,) — Hiy) satisfying,
the commutation relations

[’\.u\ KH] = hjkl\'l' - 6|l}\—kj ) (36)



and the Hermitian conjugate relations K.-'J- = Kji. The action of these gen-
erators of ['(3) on H|m) is given by
> (3.7)

Kol ) =2 (8

where the matrix elements < ...|Kj,|... > are the standard ones.

The state space of a physical system having U(3) symmetry can then be
decomposed as a direct sum Y & Hm (including multiplicities, as required).
The vector space H|m) used throughout this section has this significance of a
subspace of states of such a physical system.

C. Action of U(3) on hAjy,.

For each U € ['(3). the Lie algebra {K,,} generates a unitary transfor-
mation Ty’ of the space Hip:

(U)Il"']> (3.8a)

where DI™(L") denotes a unitary matrix with rows and columns enumerated
by the L'(2) Gel'fand patterns 'n' and m, respectively. Here the irrep label
[m] occurs as the top row in both patterns:

([m']) ([m]) . (3.8b)
m m
The unitary irreducible representation matrices

{(D™(U) U € U(3)} (3.9)

are much-studied objects?$:14=24 jnd are known explicitly, but are quite
complicated. The only property we need here is that the correspondence

U — DI"(L) . ench U" € U'(3) (3.10)

is a representation of {7(3) by unitary matrices of dimension, dim[m]. The
unitary property is also expressed ns

Tl'-l = T,'l . (3.11)



D. Irreducible Unit Tensor Operator Maps H|,) — Hjn:

It is well-known how to determine the irrep labels (k] = [k)kok3] of the
irreducible ['(3) tensor operator maps:

T((K]) : Him] = Him] - (3.12)

The U(3) irrep labels are just those occurring in the reduction of the Kro-
necker product

[m] x [m] =) _®[k . (3.13)

Here [m] denotes the irrep of U'(3) that is the complex conjugate of [m]:
[M] = [M13M2Mas] = [—mas, —ma3, —my3] . (3.14)

(See, for example, Ref. 14.)
The explicit decomposition of the Kronecker product [ x [m] into irreps
of [7(3) is given hy

[m] x [m] =) _ I([m] x [m]; [K])[K] , (3.15)
(k]

where I([m] x [m]: [k]) denotes the (intertwining) number of times irrep k]
is contained in the representation (7] x [m]. (See Refs. 25-28 for a discussion
of these numbers and their relation to the Littlewood-Richardson numbers.)
The summation in Eq. (3.15) is over all irreps

[k] = [kl’\zkal (316&)
such that the k, are integers satisfying the following relations:
(i) ki+ks+ky =0,
(i) 0<ky<myy—my;,
(i) —=(my3 —my) <k <0. (3.16h)
The interwining number has the following explicit values:

() x i M) = by~ by 41,
for by 2 Onnd ky < min(myy — mgy, gy — mag);
(3.17n)
I([mi] > [m]:[K]) = min(myy ~ mygy - kyomgy — mag — ky)
for ky > Oand Ay > min(rgg —~ mgy gy — myy) .
(3.17h)



For k; < 0, we have the relation
I([m) x [m]; [k]) = I([m] x [m] ; [F]), (3.17¢)

so that together Eqs. (3.17a,b) and (3.17¢) give explicitly all multiplicity
numbers appearing in the Kronecker product reduction, Eq. (3.13).

The explicit set of unit tensor operators, which constitute a basis for all
maps Hiym) — Hm), is given by

0
A ¢ -¢
<[k]> = < kl kg ka > ’ (318&)
a ay2 a
ag)

where the irrep label [k] runs over all values satisfying the conditions (i)-(iii)
above. For each such [k], the entry in the operator pattern

-0
A= (e —e) , (3.18h)
and the a,, in the Gel'fand pattern
a= ("" “") , (3.18¢)
ay)
assume the following values:
€=hky kg +1, ..., kg= 14+ [ x|m]; [k]); (3.18d)
ki 2o 2k 2 a3 2k 003 204 2 0g3. (3.18¢)

The restriction of the €-values to the domain given by Eq. (3.18d). rather
than the full domain admitted by the betweenness conditions, is a conse-
quence of the eanonienl splitting conditions for the [/{3) WCG coeflicients
ns determined by null space (see Refs. 29-35).

That the counting is correet for the reduction given by Eqs. (3.15)-(3.18)
may be verified from the equation

(dim[m])? .. Z I([7i] < [m]; [K]) dim[k] . (3.19)
(k]



where the summation is over all [k] satisfying conditions (3.16b).
It is useful to give an example illustrating the above rules:

[0.—1,-2] x [210] = [000]® 2[1,0,-1] b [1,1,-2]
$[2,-1,-1]& [2,0,-2] . (3.20)

The set of patterns labelling the unit tensor operator maps Hjy ; o) = H{z1 o)

0 0 N
00000 o o 40,
0 0 1 0 -1 1 0 -1
0 @ a
0 0 0
1 -1 1 -1 0 0
1 1 -2]'|2 -1 —1)'|2 o -2 (32
o a" a'

in which a,a’,a”,a"” runs over all patterns satisfying betweenness. This

provides the 1+ 2(8) + 10 4+ 10 + 27 = 64 mappiugs of the space Hj | o), with
dim(2 1 0] = 8, onto itself.

The action of the unit tensor operator (3.18a) on the space Hiy,) is given

S, e

where the notation < --- 1 < > |+-- > denotes 1 WCG coetricient of U(3).
The operators defined by Eq. (3.22) obey the following relatices:

t
L < [” > <[” > = h.\n\' y 01 "[ml y (323“)

t

() (1) et




[m]

()

[n consequence of relation (3.23a), these operators are called unit tensor
operators,

For each irrep label [k], the set of dim[m] maps (3.18a) corresponding to
all Gel'fand patterns a transforins under the action of the unitary operator
Ti: defined by Eq. (3.8) according to

A A
Tis < (k] > Ty-1 = }:D:,G(U)<[k]> : (3.24)

This relation equivariance expresses the property that the set of operators

()

is an irreducible tensor operator of 7(3) for each operator pattern A.

5 < [m]

> = barrbqar(dim|m])/(dim[k]) . (3.23c)

« is a Gel'fand pattern } (3.25)

E. Algebra of U(3) Unit Tensor Operators:

The set of (dim[m])? operator maps H(m) = Him) defined by Eqs. (3.22)
i n basiv of the vector space of all linear maps Hypm) — Him ]- The scalars of
this vector space are invariant operators with respect to U(3). In addition,
these unit tensor operators obey the following product law:

bY A LY U A"
<lk:l> <[kl> =3 { "] (K] (k] } <lk::l> , (3.26)

where the quantity {7} is an invarinnt operator; it is defined in terms of
U'(3) WCG coetlicients and U7(3) Raenh invarinnt operntors by

{ll\::l uvl lil} - <“"'!<u| “'>
HE (@\«;) (M)} e




The summation is Eq. (3.26) is over all irreps [k"'] contained in (k'] x [k], and
also over all Gel'fand patterns a” and operator patterns A", as described in
Eq. (3.29b) below. In Eq. (3.27), the symbol < --.| < > |-+ > denotes a
U'(3) WCG coefficient, and {(---)(---)(---)} denotes a U(3) Racah invariant
operator. The cigenvalue of this I7(3) Racah invariant on the space Hin is

denoted ,
{(li’l) ([E]) ([f\'l) } ((m]) , (3.28a)

and is defined by the action of the invariant operator on an arbitrary vector
of Hj,n), which may be taken to be a basis vector:

{([';:l) ([E') ([ill) } [:1>
- { (%) ([Egl) (%1 }([mn

The U'(3) Racah coefficient given by the notation (3.28a) is a real number
of considerable complexity in its dependence on the integer entries entering

its definition. For clarity, we display the symbol fully, in anabbreviated
notation;

k.” A.” k" . 7" ! k k k

1 2 3 1Nz Y 1 2 K

{ L— L ky o ky kY L }([mnm“mm])
0 Y 0

0

['"]> . (3.28b)
m

(3.29a)

By construction, this coetficient is zero unless all of the following generalized
triangle conditions nre fulfilled:

(i) k] € [i] x [in] and [k} ¢ (] x [m] ;

(i) (k") € (K] x [k] ;

(i) [&"] - [k ¢ A'), where A(9") denotes the shift of the

operator pattern 7' defined by A(y") = [A () A7) As(y')]
RITER PRI PR TR B PR B R (PR T
(iv)  all patterns satisfy the betweenness relations ;

(v) [ is an arbiteary $(3) ierep Inbel (:3.20h)



Here we use € to denote, for example, that [k} occurs in the Kronecker
product [} x [m] reduction.

The above notation for a [7(3) Racah coefficient is explained in detail in
Refs. 14,36; indeed, the notation extends to U(n). It is useful to remark that
only operator patterns and the irrep labels of the irrep space Hj,) appear
in this notation, the latter reflecting that the coefficients have their origin
as invariant operators, and the former reflecting that operator patierns are
structual elements arising in the resolution of the multiplicity of irreps in the
Kronecker product for general U(n).

The notation described above applies equally well to U(2) Racah co-
cfficients, which are related in the following way to the standard W or 6-)

notation:
1
Kk 7 ki k
{ ( 'Au 2) (L'l "'2) ( IA 2) }(mlz»mzz)
/\I

= [(2e + 1)(2f + 1)]'/*W(abed; ef) , (3.30a)
where
= l(n 2 — may) — [N = l(k" + k3))
a = o n2 22 g\ 2)]
1

b= E(kl - k'l) )

¢ = ;(mlg —ma).,

d = .—i(k'I - k),

= -l—(m 2 —myy) =[N = }-(k' + k3))

= gl 22 AR 2)]

f = %(k'l' —- k), (3.30b)
with kY = ky + Y k) = ky + (K + &) = 9") and A" = A+ V. It is o fnet
that [7(n) Racah cocflicients may always be taken (by a phase choice) to be
SU'(n) Raenh coetlicients.

The [7(2) notation above i redundant, but nonetheless is indispensible
for the 17(3) Raeah coetlicients and the general U(n) ense in exhibiting clearly
the structure fentures of these coeflicients, The notation shows unanmbign-
ously how Rucal coetlicients inherit the operntor pattern from those of the

Wigner cocflicients, these patterns themselves being the structural elements
on which is based the resolution of the multiplicity problem. This is most



clearly brought out by the following identities (see Refs. 36-38) for the case

at hand:
AN A N A A\ t
{[k""] (K] (K] } = <[k"]> <lkl > < £ > , (3.31a)
X Y : k" ¥ k
{([i.,') ([i:l) (‘i‘)} - ,,%<[°"] <l§;1> [a'>
)\ A A '
< <[k"]> <[k] > < [k:‘l]> (3.31b)

It is worth remarking here that the general algebra of unit tensor opera-
tors is infinite-dimensional (countably), but since all the operators introduced
in this section are maps Hj,) — Hjp), the algebra (3.26) is finite-dimensional,
there being altogether (dim[m])? clements in the algebra, which closes. In-
deed, all these unit tensor operators are represented on Hi,,) by real orthog-
onal matrices of dimension, dim{m], a key fact that we utilize in Section G
below.

F. Wey!| Basis of the Lie Algebra of U(dim[m)):

The set of (dim[m])? Weyl basis elements of U(dim[m)) is given by

{E,,,',,. l (["::,]) and ([:::]) are Gel'fand pntt.q-rus} . (3.3

The subseripts m' and m are U(2) Gel'fand patterns that share the same
[7(3) wwrep label [m]. These operators obey the commutation relations

[Em'nn Em'”m“] = hm m'! Em’m“ - hm'm” Em‘”m ' (333)
where for the evaluntion of the Kronecker 8's two [7(2) Gel'fund patterns are
detined to be equal when their corresponding eutries are equal, and otherwise

nre defined to be unequal,
A bijection of the Weyl basis elements (3.32) to the standard set

{EG Vg 120000 dimfinl) (3.34)



may be obtained from the following rules: For given U(3) irrep labels [m],
we introduce a total ordering on the set of all U(2) patterns by writing

my, mj, 5 ™2 ma (3.35a)
mi, my '

whenever the first nonzero entry in the 3-tuple
(mi; — mig,my, — mag,my; — myy) (3.35b)

is non-negative; otherwise, we write m > m’. The bijection is then given by

(mm mz;;) - 1‘ L (mza mas) —-»dim[m], (3_36)

myy Ma3
with all intermediate patterns being mapped in turn to the integer given by
the rule: if m’ > m with m’ — n’ and m — n. tken n' < n. This rule accords

with the nne used in Eq. (2.16), where the index j — m + 1 is mapped to 1
for the highest weight (m = j) and to 25 + 1 for Jhe lowest weight (m = —j).

G. Racah Basis of the Lie Algebra of U(dim[m]):

The real orthogonal matrix R of dimension (dim[m])? is defined by

A m . 1/2 A
dim(k] [mn] [m]
k = |—— y . .
( "]) (l::::])] [(lim[m] < m' [:] m (3.370)
Property (3.23¢) expresses the fact that the matrix R with rows and columns
enumerated by the patterns

A m
(k] | and { [m] |, (3.37h)
«a m'

respectively, is real orthogonal.  This matrix is now used to define a new
basis, the Racah basia, of the Lie nlgebra of U(<lim|m]):

A A m
K ([H) - x n [( kl) ([m])] Form (3.38)

R




Since the matrix R is real orthogonal, relation (3.38) can be inverted to given
the Weyl generators in terms of the Racah generators:

e B EE)
([E]) ) "’ }

The embedding of the symmetry group U(3) in the U(dim[m]) is now
obtained in the following way: The relation between the K, generators of
U'(3) given by Eqs. (3.5)-(3.7) and U(3) Wigner operators is given by (see
Refs. 14,39,40)

0
. ; 0 0 S,
K;; = (—1)1(1)1/2 <1 0 - 1> TN (3.40a)
(i.7)
0
0 0
(K1 = Ky2)/V2 = —(I)'/? < 1 0 - 1> : (3.40b)
1 -1
0
0
0 0
(K11 + Ky — 2K33)/V6 = (I)'/? < 1 0 - 1> . (3.40¢)
0 0
0
0
; 0 0
Ky + ’\-22 + Ky =1 \0 0 ()> . (3.40d)
0 0
0

In Eq. (3.40n0), the index pair (1,)) denotes the unique Gel'fand pattern having
weight ey - e, where ep = (100),e2 = (01 0),e3 =(001). The invariant
operators appearing in these relntions have the following definitions:

l B (:’ll lf )/27 N (3.“1“)

with



L=) Ki, L=) KiK. (3.41b)
i iJj

The eigenvalues of I, and I; on H[,,.] are

Ii([m]) = my3 + ma3 + mas (3.42a)
3 3
L(m]) =Y (mia+3-i —2) (ma+3-i)+1. (3.42b)
i=1 131

We thus obtain the following relations on Hjy):

0
K.-j=(—l)’A([m])E<1 0 0 °_1> Vit (3.43a)
(i,7)
0 0
0 0 0 0
K = -4.'.'([m])E<0 0 0> + Bii([m])E < 1 0 - 1>
0 0 1 -1
0 0
0
0 0
+C.-.-([m])E<1 0 —1> . (3.43b)
0 0
0

where

A([m]) = [(dim[m))I([n])/8]'/? ,
An([m]) = Az([m]) = Ass([m]) = [(dim[n ])/8]"/*I;([m])/3 ,
~Bui([m]) = Bz([m]) = A([m])/V2, Bas([m]) =0,
Cui([m]) = Caz([m]) = =Cha(|mn])/2 = A([m])/\/(-i . (3.43¢)
These relations give explicitly the embedding of the symmetry group U(3)

in U"(dimfin]).
The commutators of the U(3) generators K,y with the general elements

(3.38) of the Racah basis are given by
\ A
[”>E (m) , (3.44)
« o

)] 521




where < - - |Kj|- - - > denotes the standard Gel'fand-Zetlin matrix elements
of the U(3) generators K;:. These relations show that the Racah basis of the
Lie algebra of U(dim[m]) consists of irreducible tensor operators with respect
to U(3). Globally, this relation is expressed by

(23 a

A A
TuE ([k]) Ty = ZD:,:G(U)E ([k]) ,eachU e U(3) . (3.45)
’ a'

H. Structure Constants in the Racah Basis of the Lie Algebra of
U(dim[m])):

We now apply relation (2.26) and use the produci law of U(3) unit
tensor operators to obtain the following relations for the Racah basis of the

Lie algebra of U(dim[m]):
A A ATOATA A

E{K|.E[WR]|{= ) A|KI¥EK]|E|L ], (346a)
a' a A" o o a a"

where the structure constants in the relation are given by

()
ATOX A im imlk'] diml[k"11/2
| [[k,.] " [k]] - [diml] dimft) i

dim[m] dim[m)] dim[m]

DU Al AN
x ({[k;} ) 4] ([m])—{[k::] 1 lk’]}([ml)) . (3.46)

with (see Eqs. (3.27)-(3.28))

AN A "
{ ] 1] (k) } IS <[§,,]

Bl
x { (“jﬁi‘) ([E]) (“;') } ([m)) - (3.46¢)

This result for the structure constants is the U(3) analogue of the SU(2)
result given by Eq. (2.28). It is to be noted, however, that the U(dim[mn]}
structure constants given by Eq. (3.46b-c) entail a summation over the op-
eritor patterns 5'; that is, the structure constants do not in the general case
essuwmne a factored form into @ product of a WCG coefficient and a Racah co-
efficient. This result complicates the situation for determining Lie algebraic
zeroes of the U(3) Raeah coctlicients, as we discuss in Section V.




I. Action of U(dim[m]) on Hiy:

Let V" € U(dim|m]), and let the elements of V' be enumerated by the
U(2) Gel'fand patterns m' and m described in Eqgs. (3.32)-(3.36). Then the
action of U/(dim[m]) on H{m) is given by

[$]> = ;V'"""

In particular, since DI™(U) € U(dim|m)), each U € U(3), we find that

[m]

Sv

> , each V € U(dim[m]) . (3.47)

SD("‘I(U) = TU . (348)

This result shows that the space H|,) carries the fundamental representation

plie-(yy=y (3.49)

of U(dim[m]) and that this rep.esentation, when restricted to the symmetry

group U(3) as embedded in U(dim[m]) in the Racah basis, reduces to the
irreps of this U(3):

Dol piml(r7y)) = DI™(U) , each U € U(3) . (3.50)

IV. RACAH BASIS FOR THE LIE ALGEBRA OF
ANY SUBGROUP G c U(dim[m]):

Let G be an arbitrary subgroup of U(dim[m)):
G C U(dim[m]). (4.1)
Let the Lie algebra of G have basis
(X1, X2 ...,X,} (4.2)
with commutation relations

[.Y,-,.Y.] = ZC:, -Yl ’ re = 1!2! e Py (4-3)
t

where {C!,} denote the structure constants.
We may restrict the fundumnental {1 0 -+ 0] irrep of U(dim[m]) to
(' and obtain A representation of G by matrices of dimension, dimfm|. We



denote the corresponding representation of the basis elements {X,} of the
Lie algebra by
(MM, ... M,). (4.4)

These (dim[m]) x (dim[m]) matrices then satisfy the commutation relations
(4.3b):
M, M= CL. M, rs=12 ...,p. (4.5)
4

We next obtain the realization of the Lie algebra of G on the vector
space Hip in the following way: Define the linear map

L, : Hjy) = Him) (4.6a)
by
L= (M)mm Em'm (4.6b)

where {E..'m} is the set of basis elements of the U(dim[m]|) Lie algebra, as
described by Egs. (3.32)-(3.36). The maps in the set

{Li,Lay ... ,Lp} (4.7)

then also satisfy the commutation relations:

[L,,L)=S5 CL L, rs=12 ... ,p. (4.8)
(

The operators L, in the sct (4.6) can be expressed in terms of the Racah
basis of the Lie algebra of U(dim|[m]) by using Eq. (3.39), which relates the
Weyl and Racah basis:

A A
L= ) R (ikl)E(lkl) , (4.9n)
pY (¢ «
@

where the coefficients R,.( - ) are defined by

A A m
R, ([A]) = Z(/\-{,),,,:,,, R [([k]) (m])] =12, ... ,p. (4.9b)




Using identity (4.9a) for the L, in the commutation relations (4.7), and
Eq. (3.46a) for the commutator of Racah basis elements, we obtain the fol-
lowing relation between structure constants:

X A A" AT
Y R ([k;]) R, (Ikl) A [lk;] ] [kl]
\ )Y Qa a Q a a
() (#)

An important point to note here is that, once the matrix realization

al

AH
=) ClL R (lk’;l) : (4.10)

X,—M,. r=12....p (4.11)

of the Lie algebra of G is given, the operator realization of this algebra on
the space Hiy,.
X—=L,, r=12...,p, (4.12)

in the Racah basis, as given by Egs. (4.9), is uniquely determined.
V. ZEROES OF U(3) RACAH COEFFICIENTS

We have shown in the Section III how the ['(3) Racah coefficients
encer into the structure constants of the Lie algebra of U7(dim[m]) in the
Racah basis of this algebra. The symbol for these coefficients and some
of its properties are given in Eqgs. (3.26)-(3.31). The coefficient is zero, by
definition, whenever the integers entering into the arrays occurring in the
sytabol fall outside their domains as described by the generalized triangle
conditions in (i)-(v) given in Eq. (3.29b).

It is a well-known fact that the SU°(2) Racah coefficients possess infinite
families of zeroes, even when all the triangle conditions are fulfilled and all
symmetries taken into account. A few of these zeroes (nine, in fact, as of

1938) have found explanation in terms of a group G lying between SU(2) [or
S0(3)] and U'(25 + 1):

SC(2)c G U(2)+ 1), for some j ,
or

SO CGZU(2)+ 1), for some j . (H.1)



(See Ref. 11 for summaries as of 1986; see also Refs. 10,41-46); since the Lic
algebra of G is a sub-Lie algebra of that of U'(2j + 1), containing also the
SU(2) [or SO(3)] Lie algebra, the Lie algebra of G can be realized in terms
of the Racah basis. This then implies relations on the structure constants
given by Eq. (2.28), leading in some instances to a required vanishing of a
Racah coefficient. We call zeroes of this type Lie algebraic zeroes.

Infinite families of zeroes of the Racah coefficients, including the Lic
algebraic ones, have also been obtained as the solutions of classical Diophan-
tine equations that arise directly from the explicit form of these coefficients.
Brudnot® initiated these Diophantine equation studies, and, since, a nun-
ber of publications*® ~*7 along these lines have followed. (No comprehensive
theory of all zeroes of SU(2) Racah coefficients has yet appeared, to our
knowledge.) (Aside from the discovery of several Lie algebraic zeroes, the
occurrence of numerous zeroes was first shown numerically in Ref. 58; see
also Ref. 59.)

The question of zeroes of the SU(3) Racah coefficients is complicated
bevond that of SU(2) by another structural feature: The structure constants
in tl.e Racah basis given by Eq. (3.46a) no longer appear in a factored form
as they do in the SU(2) case of Eq. (2.28). This situation is unavoidable,
since it is a direct consequence of the multiplicity structure of the Kronecker
product reduction. On the other hand, if G is a group such that

SU@3)Cc G cl(dimm), (5.2)

then the Racah basis of the Lie algebra of G must close with attendant
relations between the structure constants. Does this imply also some SU(3)
Racah coefficient zeroes? We examine this question more closely below for
the exceptional Lie group Eq, which has the embedding

SU(3) c Eq C SU(27). (5.3)

Still another fenture enters into the discussion of U(3) Racah coeflicient
vanishings. Certain zeroes are implied by the eanonieal splitting conditions
that resolve the U(3) multiplicity, These zeroes are, in fact, n consequence
of the fact that a certain class of Racah invariants must be the null invariant
operator 0 in consequence of null space structural properties of operator pat-
terns (see Ref. 34). These zeroes go beyoud the trinngle rules of Eq. (3.29h),
It is proved in Ref. 34 (see Eqa. (3.15) of this reference) that these stractural
zeroes include the following ones nmong the coeficients deseribed in Fgs.

T (@) e e



whenever the following condition is fulfilled:
P4 =" 2> [k = A7) = [k — Aa(y)] + 2, (5.5)

where the indices i,1',i" have the following definitions in terms of the oper-
ator patterns appearing in the symbol (3.29a):

k=41, for kg 20
V= {—k; -f+1, for kg <0 ' (5.6a)
K- +1, for k3 >0
l—{—ka—l"+1. for kj <0 ° (8.6b)
k=041, for ki >0 . .
! "{—k;'—l’"+l, for k¥ < 0 (8.6¢)

The indices ¢,¢',1" arise in the canonical labelling of the operator pat-

terns in a given multiplicity set in the following way (sce Refs. 32-34). It is
sufficient to illustrate the rule for the index 1, since the others are obtained
similarly. U'(3) operator p: terns may be ordered by two different rules,
which, it turns out, are compatible, In the first rule, we write for ko > 0:

. \ . ky ky ky
(k' k2 “1) = ( [ 4 ) : (5.7n)
l-‘kl-""l ()

thnt is,
rh-—f-i-l;r\"—-"(r 0‘(‘) [ pzkllkl—lnl-'vk')' (5--”))

We now apply the order rule on such patterns given by Eqs. (3.35) to obtain
r| > l") R l.A' v A! s k| - k'] " 1 . (5.7(‘)

Simmilarly, for k4 < 0, we write

. l'
I ky 041 - AN (f 0 ) N (i A'-). k-g l. P '-'k_'| ' (58!\)

with ngnin
Ny Py oo o M kg ky b L (H.8h)



These inequalities on operator patterns then accord exactly with the nested
properties of the null space of the unit tensor vperators

Ly
<k| k2 k;|> ' t = 1,2, ey A!. (598.)
°
ns given by
N(TY)DN(I'3)D - DON(I'y). (5.9b)

Operator patterns were, of course, introduced precisely to accommodate this
nested null space structure of the associated unit tensor operators.

The results given in Eqs. (5.4)-(5.9) allows us to identify structural ze-
roea of the Racah coefficient associated with the canonical resolution of the
multiplicity. We use this result below

Let us return now to the problem, for Racah coefficients, originating
from the existence of the group-subgroup chain (5.3). Our first problem is
to obtain the generators of Eg in terms of the Racah basis of SU(27). The
27-dimensional irrep of Eg is complex,%® which implies that the generators of
this representation nre antihermitian. Thus, for the Eg Lie algebra, we may
tnke the basis elements

{My My, ..., My}, withp=T18, (5.10n)
of Eq. (4.4) to be nutihermitian
M!=-M,, r=12...,T78. (5.101)
Using this result in Eq. (4.6b), we obtain
Lt=-L., r=1,...,7, on Hyay. (5.11)

Thus. the Lie nlgebra of Ey is realized on the spaee Hyg 3 ) v antihermitinn
operntors.  For the connisteney of Eq. (5.3), let us note that the SU(3) Lie
nlgebri can also be realized by 27 x 27 real, skew symmetrie matrices, This
representation is equivalent to the [4 2 0] irrep, and ean be obtained by using
the Gell Mann®! generntors of SU(3).

We thus obtain eight of the Ky generntors as the cight SU(3) generntors,
ns given in the Raeah bawin by Eqge, (3.40) (3.43). The remnining seventy
must come in conjugnte pairs to realize the conjugntion property (5H.11). All
maps Mg g ) » Hyg g o) nre Inbelled by the irreps oceurring in the reduction



of the Kronecker product [0 —2 — 4] x [4 2 0]. This reduction is given by
Eqs. (3.15)-(3.17) to be

[0-—2—4])([4 20]:

4 0 —4] P[4 -1 =3] 43 1 —4]
125 81 81

B4 -2 —2] B2 2 —4] B23 0 —3] 23 -1 —2] 22 1 — 3]
28 28 64 35 35

132 0 -2 2 -1 -1 1 1 -2 @21 0 —1] +[0 0 0]
27 10 10 8 1
(5.12)

where we have written the dimension below each irrep label. We see from
this result that the only irrep labels that qualify for labelling the remaining
generators of Ey in the Racah basis are the thirty-five dimensional conjugate
irreps

2 1 -3]and[3 -1 =2]. (5.13)

The explicit conjugation relation for the corresponding unit tensor op-
erators is

t

A A
<2 1 --3> = (-1)¥™ <3 -1 —2>.
T T}
\ = (l 0-—1) or (2 ()_2) , (5.14n)

dla) o oy ooy, a = (...,,,“ o ’ "”) . (5.14b)
LR R

whiere

We conelude from these relations that the orthogonnl mntrix defined by Eq.
(3.37n) has the property

{0 e
el )] e



Using this result in Eq. (4.9b), together with the antihermitian property of
the matrix M., now gives

A )
Rel2 1 =-3)=—=(-1"R. |3 -1 -2 (5.15b)
o o

for ench of the operator patterns A in Eq. (5.14a) (note that A = A).

We now use relation (5.15a) in Eq. (4.9a), selecting only the terms
2 1 =3 and [3 =1 —2] from the sum, to conclude that the remain-
ing generators of Ey in the Racah basis are given by

) 0 0 \
A ¢ -0
Le=) 3 R s 1 -3]El2 1 -3
0 0
2
—ZEm 2 p 14—3 (-D¥™ E 3 p— 1—(—2 ‘
f=1 o 1 \ o

(5.16a)
where r = 9,10, ... , 78, since we can choose the generators
{L|,L'), cea Ln} (516‘))

to be those of the SU(3) subnlgebra, This set of operators then satisfies the
nntihernitinn property:
L'=-L,, r=12 ...,78. (5.17)

We observe agnin that once the 27-dimensional antihermitinn generators
(H.10n) of the 27-dimensional vepresentation of Eg are specified, there is no
freedom left in expressing the generators Ly in terms of the Racah basis, sinee
the R, coeflicients in Eqs. (5.1060,D) are uniguely obtained from Eq. (4.9b).

It follows from Eq. (5.16a) that the following operators are n basin for
these generntors:

4 0 0
l's:) - 2: E 9 ( | ’ Nk (-1 )d'(u) E l f
=1 ) v )

0 o
(H.18n)
’ . 0 . . 0 .
(1) e _ él) g
A% .?: Ely, % AN | NIE
(R} ty

(H.18h)



where a runs over all thirty-five Gel'fand patterns for the given irrep labels.
These operators then satisfy the following identities on the space Hi4 ; o)

LL”' =L, Lf,,’" = —Lff) ) (5.19)

Let us now consider the consequences of the £y embedding (5.3). We
have, first of all, that the commutators

0
0 0 (@) s

El, "o _{]| L’y e=12, i#j=123 (520)
(i, j) i=j=12,

must close on the generators of Eg. These commutators must, by construc-
tion of the Racah basis, close automatically on the generators of Eg because
of the irreducible tensor property expressed by Eq. (3.44) (see Eqs. (3.40)
and (3.43)). That is, the closure of the commutators (5.20) is a property of
the Racah basis, and got of the Eg embedding. Indeed, in consequence of
the irreducible tensor operator property (3.44) and the generator relations
(3.40), the structure constants for the Racah basis must obey the relations:

0

0
A A
" 0 0 N (k] 0 0 [k]
A [“‘,, o -1 [(k‘] - blk”"kl<n" <1 0 - 1> a > ‘
(1.J) (1,))
fori #£)=123i=j=12;
(5.21n)
0
A\ 0O 0 A
ALK 00 0] “l = h“ullkl dann Oprrgy - (5.21h)
o 0 0 T
0

These relations nlrendy lead to interesting and nontrivial identities between
WU and Raenh coeflicients when the structure connennts given by Equ.
(3.46b,¢) nre substituted for the left hand side in Eq. (5.21n). These relations
are, as pointed out nbove, got properties of the Ky etmbedding, but eather of
the ennoneial splitting nnd null spaee conditions defining the solution of the
tunldtiplicity problem.

For the possibility of 0 SU(3) Raeah coetlicient vanishing in consequence
of the Ky embedding (5.3), one requires the closure of the commutators

(L L9 ae 02, (5.22)



on the Eg generators. In the next step, we substitute relations (5.18) for
the generators into the commutator (5.20), wsing relation (3.46a) to obtain
a linear combination of the Racah basis elements of the form

A" €2 1 -3]x[2 1 -3],
A”
E{[]] with (k"] €[2 1 =3]x[3 -1 -2,
A"]€[3 -1 -2]x[3 -1 -2]. (5.23)

For closure of the Lie algebra of Eg, the coefficients of each operator (5.23)
must vanish for (A"} #[1 0 -1],[2 1 =3],[3 =1 —2]. This leads to linear
relations between the structure constants.

To determine if there are any SU(3) Racal coefficient zeroes associ-
ated with a linear relation between structure constant described above, one
expresses these coefficients in terms of WCG and Racah coefficients using
Eqs. (3.46b,¢). One must at the same time account for the null space zeroes
us deseribed by Eqs. (5.5)-(5.9). The result of this is a set of relations be-
tween WCG and Racah coefficients. Finally, one must take into account the
sytnetry relations for WCG coefficients, as well as those for the Racah coef-
ficients. Since such synnnetry relations are not, at this timme, known generally
for generie irrep labels, it is a sizeable task to implement this procedure. It
may. indeed, require numerieal caleulation of the relevant coeflicients.

We have formulated here the rather intricate structurnl relations that
underly the problem of zeroes of SU(3) Racah coeflicients. We hope to
implement this process for particulnr coefficients in a future paper, using
cither more detailed knowledge of the required symmetries than presently
nvuilable, or with the help of numerical ealeulations.
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